login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379500
Square array A(n, k) = A249670(A246278(n, k)), read by falling antidiagonals; A249670(n) = A017665(n)*A017666(n), applied to the prime shift array.
3
6, 28, 12, 2, 117, 30, 120, 40, 775, 56, 45, 1080, 1680, 2793, 132, 21, 672, 19500, 7392, 16093, 182, 84, 390, 3960, 137200, 24024, 30927, 306, 496, 176, 43400, 208, 1948584, 55692, 88723, 380, 78, 9801, 5460, 368676, 40392, 5228860, 116280, 137541, 552, 210, 9300, 488125, 17136, 2928926, 69160, 25645860, 209760, 292537, 870
OFFSET
1,1
FORMULA
A(n, k) = A341605(n, k) * A341606(n, k).
A(n, k) = A379499(n, k) / (A355925(n, k)^2).
EXAMPLE
The top left corner of the array:
k=| 1 2 3 4 5 6 7 8 9 10
2k| 2 4 6 8 10 12 14 16 18 20
--+---------------------------------------------------------------------------------
1 | 6, 28, 2, 120, 45, 21, 84, 496, 78, 210,
2 | 12, 117, 40, 1080, 672, 390, 176, 9801, 9300, 6552,
3 | 30, 775, 1680, 19500, 3960, 43400, 5460, 488125, 83790, 102300,
4 | 56, 2793, 7392, 137200, 208, 368676, 17136, 6725201, 18392, 10374,
5 | 132, 16093, 24024, 1948584, 40392, 2928926, 50160, 235793305, 4082364, 4924458,
PROG
(PARI)
up_to = 55;
A249670(n) = { my(ab = sigma(n)/n); numerator(ab)*denominator(ab); };
A246278sq(row, col) = if(1==row, 2*col, my(f = factor(2*col)); for(i=1, #f~, f[i, 1] = prime(primepi(f[i, 1])+(row-1))); factorback(f));
A379500sq(row, col) = A249670(A246278sq(row, col));
A379500list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A379500sq(col, (a-(col-1))))); (v); };
v379500 = A379500list(up_to);
A379500(n) = v379500[n];
CROSSREFS
Elementwise product of arrays A341605 and A341606.
Cf. A036690 (leftmost column), A361468 (even bisection gives row 2).
Sequence in context: A091911 A215896 A211679 * A261868 A379499 A342922
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jan 02 2025
STATUS
approved