login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379497
Dirichlet inverse of A046897, where A046897 is the sum of divisors of n that are not divisible by 4.
1
1, -3, -4, 6, -6, 12, -8, -12, 3, 18, -12, -24, -14, 24, 24, 24, -18, -9, -20, -36, 32, 36, -24, 48, 5, 42, 0, -48, -30, -72, -32, -48, 48, 54, 48, 18, -38, 60, 56, 72, -42, -96, -44, -72, -18, 72, -48, -96, 7, -15, 72, -84, -54, 0, 72, 96, 80, 90, -60, 144, -62, 96, -24, 96, 84, -144, -68, -108, 96, -144, -72, -36
OFFSET
1,2
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A046897(n/d) * a(d).
From Amiram Eldar, Jan 02 2025: (Start)
Multiplicative with a(2^e) = -3*(-2)^(e-1), and for an odd prime p, a(p) = -(p+1), a(p^2) = p, and a(p^e) = 0 for e >= 3.
Dirichlet g.f.: 1/((1 - 1/4^(s-1)) * zeta(s-1) * zeta(s)). (End)
MATHEMATICA
f[p_, e_] := If[e == 1, -p-1, If[e == 2, p, 0]]; f[2, e_] := -3*(-2)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 02 2025 *)
PROG
(PARI)
A046897(n) = if(n<1, 0, sumdiv(n, d, if(d%4, d, 0)));
memoA379497 = Map();
A379497(n) = if(1==n, 1, my(v); if(mapisdefined(memoA379497, n, &v), v, v = -sumdiv(n, d, if(d<n, A046897(n/d)*A379497(d), 0)); mapput(memoA379497, n, v); (v)));
(PARI) g(p, e) = if(p == 2, -3*(-2)^(e-1), if(e == 1, -p-1, e == 2, p, e > 2, 0));
a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; g(p, e)); } \\ Amiram Eldar, Jan 02 2025
CROSSREFS
Cf. A046897.
Sequence in context: A230593 A304411 A360522 * A332619 A322319 A001615
KEYWORD
sign,mult,easy,new
AUTHOR
Antti Karttunen, Jan 02 2025
STATUS
approved