login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332619
a(n) = Sum_{d|n} lcm(d, n/d) / d.
5
1, 3, 4, 6, 6, 12, 8, 12, 11, 18, 12, 24, 14, 24, 24, 23, 18, 33, 20, 36, 32, 36, 24, 48, 27, 42, 32, 48, 30, 72, 32, 45, 48, 54, 48, 66, 38, 60, 56, 72, 42, 96, 44, 72, 66, 72, 48, 92, 51, 81, 72, 84, 54, 96, 72, 96, 80, 90, 60, 144, 62, 96, 88, 88, 84, 144, 68, 108, 96, 144
OFFSET
1,2
FORMULA
a(n) = Sum_{d|n} d / gcd(d, n/d).
From Amiram Eldar, Dec 05 2022: (Start)
Multiplicative with a(p^e) = (p^(e+2)-1)/(p^2-1) + e/2 if e is even, and (p^(e+2)-p)/(p^2-1) + (e + 1)/2 if e is odd.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 7*zeta(6)/(8*zeta(5)) = 0.740543... . (End)
MAPLE
a:= n-> add(d/igcd(d, n/d), d=numtheory[divisors](n)):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 17 2020
MATHEMATICA
Table[Sum[LCM[d, n/d]/d, {d, Divisors[n]}], {n, 1, 70}]
f[p_, e_] := If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1) + e/2, (p^(e + 2) - p)/(p^2 - 1) + (e + 1)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Dec 05 2022 *)
PROG
(PARI) A332619(n) = sumdiv(n, d, lcm(d, n/d)/d); \\ Antti Karttunen, Nov 12 2021
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Feb 17 2020
STATUS
approved