Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Dec 05 2022 04:46:14
%S 1,3,4,6,6,12,8,12,11,18,12,24,14,24,24,23,18,33,20,36,32,36,24,48,27,
%T 42,32,48,30,72,32,45,48,54,48,66,38,60,56,72,42,96,44,72,66,72,48,92,
%U 51,81,72,84,54,96,72,96,80,90,60,144,62,96,88,88,84,144,68,108,96,144
%N a(n) = Sum_{d|n} lcm(d, n/d) / d.
%H Antti Karttunen, <a href="/A332619/b332619.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Ga#gcd">Index entries for sequences related to gcd's</a>.
%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>.
%F a(n) = Sum_{d|n} d / gcd(d, n/d).
%F From _Amiram Eldar_, Dec 05 2022: (Start)
%F Multiplicative with a(p^e) = (p^(e+2)-1)/(p^2-1) + e/2 if e is even, and (p^(e+2)-p)/(p^2-1) + (e + 1)/2 if e is odd.
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = 7*zeta(6)/(8*zeta(5)) = 0.740543... . (End)
%p a:= n-> add(d/igcd(d, n/d), d=numtheory[divisors](n)):
%p seq(a(n), n=1..80); # _Alois P. Heinz_, Feb 17 2020
%t Table[Sum[LCM[d, n/d]/d, {d, Divisors[n]}], {n, 1, 70}]
%t f[p_, e_] := If[EvenQ[e], (p^(e + 2) - 1)/(p^2 - 1) + e/2, (p^(e + 2) - p)/(p^2 - 1) + (e + 1)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Dec 05 2022 *)
%o (PARI) A332619(n) = sumdiv(n,d,lcm(d,n/d)/d); \\ _Antti Karttunen_, Nov 12 2021
%Y Cf. A055155, A057660, A057661, A057670, A332618.
%Y Cf. A013663, A013664.
%K nonn,mult
%O 1,2
%A _Ilya Gutkovskiy_, Feb 17 2020