login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057661
a(n) = Sum_{k=1..n} lcm(n,k)/n.
33
1, 2, 4, 6, 11, 11, 22, 22, 31, 32, 56, 39, 79, 65, 74, 86, 137, 92, 172, 116, 151, 167, 254, 151, 261, 236, 274, 237, 407, 221, 466, 342, 389, 410, 452, 336, 667, 515, 550, 452, 821, 452, 904, 611, 641, 761, 1082, 599, 1051, 782, 956, 864, 1379, 821, 1166
OFFSET
1,2
COMMENTS
Sum of numerators of n-th order Farey series (cf. A006842). - Benoit Cloitre, Oct 28 2002
Equals row sums of triangle A143613. - Gary W. Adamson, Aug 27 2008
Equals row sums of triangle A159936. - Gary W. Adamson, Apr 26 2009
Also row sums of triangle A164306. - Reinhard Zumkeller, Aug 12 2009
REFERENCES
H. W. Gould and Temba Shonhiwa, Functions of GCD's and LCM's, Indian J. Math. (Allahabad), 39 (1997), 11-35.
H. W. Gould and Temba Shonhiwa, A generalization of Cesaro's function and other results, Indian J. Math. (Allahabad), 39 (1997), 183-194.
LINKS
Zachary Franco, Problem 12114, The American Mathematical Monthly, Vol. 126, No. 5 (2019), p. 469; A Dirichlet Series with Reduced Numerators, Solution to Problem 12114 by Tamas Wiandt, ibid., Vol. 128, No. 1 (2021), pp. 91-92.
FORMULA
a(n) = (1+A057660(n))/2.
a(n) = A051193(n)/n.
a(n) = Sum_{d|n} psi(d), where psi(m) = is the sum of totatives of m (A023896). - Jaroslav Krizek, Dec 28 2016
a(n) = Sum_{i=1..n} denominator(n/i). - Wesley Ivan Hurt, Feb 26 2017
G.f.: x/(2*(1 - x)) + (1/2)*Sum_{k>=1} k*phi(k)*x^k/(1 - x^k), where phi() is the Euler totient function (A000010). - Ilya Gutkovskiy, Aug 31 2017
If p is prime, then a(p) = T(p-1) + 1 = p(p-1)/2 + 1, where T(n) = n(n+1)/2 is the n-th triangular number (A000217). - David Terr, Feb 10 2019
Sum_{k=1..n} a(k) ~ zeta(3) * n^3 / Pi^2. - Vaclav Kotesovec, May 29 2021
Dirichlet g.f.: zeta(s)*(1 + zeta(s-2)/zeta(s-1))/2 (Franco, 2019). - Amiram Eldar, Mar 26 2022
MATHEMATICA
Table[Total[Numerator[Range[n]/n]], {n, 55}] (* Alonso del Arte, Oct 07 2011 *)
f[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); a[n_] := (1 + Times @@ f @@@ FactorInteger[n])/2; Array[a, 100] (* Amiram Eldar, Apr 26 2023 *)
PROG
(Haskell)
a057661 n = a051193 n `div` n -- Reinhard Zumkeller, Jun 10 2015
(Magma) [&+[&+[h: h in [1..d] | GCD(h, d) eq 1]: d in Divisors(n)]: n in [1..100]]; // Jaroslav Krizek, Dec 28 2016
(PARI) a(n)=sum(k=1, n, lcm(n, k))/n \\ Charles R Greathouse IV, Feb 07 2017
(Python)
from math import lcm
def A057661(n): return sum(lcm(n, k)//n for k in range(1, n+1)) # Chai Wah Wu, Aug 24 2023
(Python)
from math import prod
from sympy import factorint
def A057661(n): return 1+prod((p**((e<<1)+1)+1)//(p+1) for p, e in factorint(n).items())>>1 # Chai Wah Wu, Aug 05 2024
CROSSREFS
See A341316 for another version.
Sequence in context: A345091 A279911 A063183 * A237277 A097954 A324333
KEYWORD
easy,nice,nonn
AUTHOR
Henry Gould, Oct 15 2000
EXTENSIONS
More terms from James A. Sellers, Oct 16 2000
STATUS
approved