login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279911
a(n) = Sum_{i=1..n} denominator(n^i/i).
2
0, 1, 2, 4, 6, 11, 10, 22, 22, 31, 28, 56, 36, 79, 58, 72, 86, 137, 80, 172, 112, 145, 148, 254, 146, 261, 208, 274, 230, 407, 182, 466, 342, 375, 360, 448, 322, 667, 456, 528, 444, 821, 384, 904, 592, 635, 676, 1082, 574, 1051, 692, 924, 836, 1379, 732, 1154, 912, 1153
OFFSET
0,3
LINKS
FORMULA
From Daniel Suteu, Jul 28 2019: (Start)
a(prime(n)) = A072205(n).
a(p^k) = (p^(2*k+1) + p + 2) / (2*(p+1)), for prime powers p^k.
a(n) = Sum_{k=1..n} gcd(m, k), where m = A095996(n).
a(n) = Sum_{k=1..n} f(n,k), where f(n,k) is the largest divisor d of k for which gcd(d, n) = 1. (End)
a(n) = Sum_{1<=k<=n, gcd(n,k)=1} phi(k)*floor(n/k). - Ridouane Oudra, May 24 2023
MAPLE
A279911:=n->add(denom(n^i/i), i=1..n): seq(A279911(n), n=0..100);
PROG
(PARI) a(n) = sum(k=1, n, if(gcd(n, k) == 1, k, denominator(n^k/k))); \\ Daniel Suteu, Jul 28 2019
(PARI) a(n) = sum(k=1, n, if(gcd(n, k) == 1, k, vecmax(select(d->gcd(d, n) == 1, divisors(k))))); \\ Daniel Suteu, Jul 28 2019
(PARI) a(n) = my(f=factor(n)[, 1]); sum(k=1, n, if(gcd(n, k) == 1, k, gcd(vector(#f, j, k / f[j]^valuation(k, f[j]))))); \\ Daniel Suteu, Jul 29 2019
(Magma) [0] cat [&+[Denominator(n^i/i):i in [1..n]]:n in [1..60]]; // Marius A. Burtea, Jul 29 2019
CROSSREFS
Cf. A279912.
Sequence in context: A303752 A304532 A345091 * A063183 A057661 A237277
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 22 2016
STATUS
approved