|
|
A279912
|
|
a(n) = Sum_{i=1..n} denominator(i^n/n).
|
|
2
|
|
|
0, 1, 3, 7, 10, 21, 21, 43, 36, 57, 63, 111, 70, 157, 129, 147, 136, 273, 171, 343, 210, 301, 333, 507, 252, 505, 471, 495, 430, 813, 441, 931, 528, 777, 819, 903, 570, 1333, 1029, 1099, 756, 1641, 903, 1807, 1110, 1197, 1521, 2163, 952, 2065, 1515, 1911, 1570, 2757
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Multiplicative because this sequence is the Dirichlet convolution of A000027 and A127473 which are both multiplicative. - Andrew Howroyd, Aug 05 2018
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Sum_{k>=1} phi(k)^2*x^k/(1 - x^k)^2, where phi(k) is the Euler totient function. - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..n} gcd(n, k) * phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 15 2018
a(n) = Sum_{d|n} d * phi(n/d)^2, where phi(k) is the Euler totient function. - Daniel Suteu, Jun 17 2018
Multiplicative with a(p^k) = p^(k-1) * ((p-1) * p^k + 1). - Daniel Suteu, Oct 24 2018
a(n) = Sum_{k=1..n} n/gcd(n,k)*phi(gcd(n,k))^2/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/(p*(p+1))) = A065463 / 3 = 0.234814... . - Amiram Eldar, Oct 23 2022
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) a(n) = sum(i=1, n, denominator(i^n/n)); \\ Michel Marcus, Jun 18 2018
(PARI) a(n) = sumdiv(n, d, d*eulerphi(n/d)^2); \\ Michel Marcus, Jun 18 2018
(PARI) a(n) = my(f=factor(n)); if(n==0, 0, prod(k=1, #f~, f[k, 1]^(f[k, 2]-1) * ((f[k, 1]-1) * f[k, 1]^f[k, 2] + 1))); \\ Daniel Suteu, Oct 24 2018
(GAP) List([0..10], n->Sum([1..n], k->DenominatorRat(k^n/n))); # Muniru A Asiru, Oct 24 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,mult
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|