|
|
A255180
|
|
Number of partitions of n in which two summands (of each size) are designated.
|
|
1
|
|
|
1, 0, 1, 3, 7, 10, 20, 24, 45, 61, 103, 140, 246, 325, 517, 728, 1086, 1472, 2184, 2918, 4197, 5638, 7875, 10497, 14625, 19272, 26354, 34804, 46992, 61490, 82471, 107163, 142128, 184141, 241701, 311282, 406164, 519755, 672726, 858110, 1102872
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
G.f.: Product_{n>=1} 1 + x^(2*n)/(1 - x^n)^3.
|
|
EXAMPLE
|
a(4)=7. In order to designate two summands of each size, the multiplicity of each summand must be at least two. For n=4 we consider only the partitions 2+2 and 1+1+1+1. In the first case there is 1 way and in the second case there are 6 ways. 1 + 6 = 7.
|
|
MAPLE
|
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+add(b(n-i*j, i-1)*binomial(j, 2), j=2..n/i)))
end:
a:= n-> b(n$2):
|
|
MATHEMATICA
|
nn = 40; CoefficientList[Series[Product[1 + x^(2 n)/(1 - x^n)^3, {n, 1, nn}], {x, 0, nn}], x]
|
|
CROSSREFS
|
Cf. A077285, A070933 (where any number of summands of any size are designated).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|