OFFSET
0,2
LINKS
Luciano Ancora, Table of n, a(n) for n = 0..1000
Luciano Ancora, Sums of powers of positive integers and their recurrence relations, section 0.5.
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
G.f.: (1 + x)*(1 + 246*x + 4047*x^2 + 11572*x^3 + 4047*x^4 + 246*x^5 + x^6)/(1 - x)^7.
a(n) = 2*(28*n^6 + 70*n^4 + 28*n^2 + 1) for n>0, a(0)=1.
EXAMPLE
Second differences: 1, 254, 6050, 52670, 266114, ... (this sequence)
First differences: 1, 255, 6305, 58975, 325089, ... (A022524)
----------------------------------------------------------------------
The eighth powers: 1, 256, 6561, 65536, 390625, ... (A001016)
----------------------------------------------------------------------
First partial sums: 1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums: 1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (A254647)
MATHEMATICA
Join[{1}, Table[2 (28 n^6 + 70 n^4 + 28 n^2 + 1), {n, 1, 30}]]
Join[{1}, Differences[Range[0, 30]^8, 2]] (* Harvey P. Dale, Aug 26 2024 *)
PROG
(Magma) [n eq 0 select 1 else 2*(28*n^6+70*n^4+28*n^2+1): n in [0..30]]; // Vincenzo Librandi, Mar 12 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 21 2015
EXTENSIONS
Edited by Bruno Berselli, Mar 19 2015
STATUS
approved