login
A255179
Second differences of ninth powers (A001017).
3
1, 510, 18660, 223290, 1448520, 6433590, 22151340, 63588210, 159338640, 359376750, 745368180, 1443884970, 2642886360, 4611828390, 7725765180, 12493804770, 19592282400, 29903014110, 44556993540, 64983894810, 92967744360, 130709124630, 180894272460
OFFSET
0,2
FORMULA
G.f.: (1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1 - x)^8.
a(n) = 6*n*(3 + 28*n^2 + 42*n^4 + 12*n^6) for n>0, a(0)=1.
EXAMPLE
Second differences: 1, 510, 18660, 223290, 1448520, ... (this sequence)
First differences: 1, 511, 19171, 242461, 1690981, ... (A022525)
------------------------------------------------------------------------
The ninth powers: 1, 512, 19683, 262144, 1953125, ... (A001017)
------------------------------------------------------------------------
First partial sums: 1, 513, 20196, 282340, 2235465, ... (A007487)
Second partial sums: 1, 514, 20710, 303050, 2538515, ... (A253637)
Third partial sums: 1, 515, 21225, 324275, 2862790, ... (A254643)
MATHEMATICA
Join[{1}, Table[6 n (3 + 28 n^2 + 42 n^4 + 12 n^6), {n, 1, 30}]]
Join[{1}, Differences[Range[0, 30]^9, 2]] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 510, 18660, 223290, 1448520, 6433590, 22151340, 63588210, 159338640}, 30] (* Harvey P. Dale, Jan 26 2019 *)
PROG
(Magma) [1] cat [6*n*(3+28*n^2+42*n^4+12*n^6): n in [1..30]]; // Vincenzo Librandi, Mar 12 2015
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 21 2015
EXTENSIONS
Corrected g.f. by Bruno Berselli, Feb 25 2015
Offset changed by Bruno Berselli, Mar 20 2015
STATUS
approved