OFFSET
0,2
LINKS
Luciano Ancora, Table of n, a(n) for n = 0..1000
Luciano Ancora, Sums of powers of positive integers and their recurrence relations, section 0.5.
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
G.f.: (1 + 120*x + 1191*x^2 + 2416*x^3 + 1191*x^4 + 120*x^5 + x^6)/(1 - x)^6.
a(n) = 14*n*(3*n^4 + 5*n^2 + 1) for n>0, a(0)=1.
EXAMPLE
Second differences: 1, 126, 1932, 12138, 47544, ... (this sequence)
First differences: 1, 127, 2060, 14324, 63801, ... (A152726)
----------------------------------------------------------------------
The seventh powers: 1, 128, 2187, 16384, 78125, ... (A001015)
----------------------------------------------------------------------
First partial sums: 1, 129, 2316, 18700, 96825, ... (A000541)
Second partial sums: 1, 130, 2446, 21146, 117971, ... (A250212)
Third partial sums: 1, 131, 2577, 23723, 141694, ... (A254641)
Fourth partial sums: 1, 132, 2709, 26432, 168126, ... (A254646)
Fifth partial sums: 1, 133, 2842, 29274, 197400, ... (A254684)
MATHEMATICA
Join[{1}, Table[14 n (3 n^4 + 5 n^2 + 1), {n, 1, 30}], {n, 0, 24}] (* or *)
CoefficientList[Series[(1 + 120 x + 1191 x^2 + 2416 x^3 + 1191 x^4 + 120 x^5 + x^6)/(1 - x)^6, {x, 0, 22}], x]
PROG
(Magma) [1] cat [14*(-1+n)*(9-22*n+23*n^2-12*n^3+3*n^4): n in [2..30]]; // Vincenzo Librandi, Mar 12 2015
(Python)
def A255177(n): return 14*n*(n**2*(3*n**2 + 5) + 1) if n else 1 # Chai Wah Wu, Oct 07 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 21 2015
EXTENSIONS
Edited by Bruno Berselli, Mar 19 2015
STATUS
approved