The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A250212 Second partial sums of seventh powers (A001015). 5
 1, 130, 2446, 21146, 117971, 494732, 1695036, 4992492, 13072917, 31153342, 68720938, 142120342, 278268263, 519829688, 932250488, 1613106744, 2704301673, 4407716634, 7005003334, 10882290034, 16560665275, 24733398404, 36310956980, 52474986980, 74742532605, 105041888406 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The general formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) is the m-th Faulhaber’s polynomial. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Luciano Ancora, Recurrence relation for the second partial sums of m-th powers Luciano Ancora, Second partial sums of the m-th powers Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1). FORMULA a(n) = n*(n+1)*(n+2)*(5*n^6 + 30*n^5 + 50*n^4 - 37*n^2 + 6*n + 6)/360. a(n) = 2*a(n-1) - a(n-2) + n^7. G.f.: x*(1 +120*x +1191*x^2 +2416*x^3 +1191*x^4 +120*x^5 +x^6)/(1-x)^10. - Georg Fischer, May 24 2019 a(n) = A239094(n+1). - Danny Rorabaugh, Apr 22 2015 MAPLE seq(binomial(n+2, 3)*(5*(n+1)^6 -25*(n+1)^4 +38*(n+1)^2 -12)/60, n=1..30); # G. C. Greubel, Aug 28 2019 MATHEMATICA Accumulate[Accumulate[Range[25]^7]] (* Robert G. Wilson v, Jan 21 2015 *) Table[(n(n+1)(n+2)(5n^6+30n^5+50n^4-37n^2+6n+6)/360), {n, 30}] (* Vincenzo Librandi, Jan 22 2015 *) RecurrenceTable[{a[n]==2a[n-1]-a[n-2]+n^7, a[1]==1, a[2]==130}, a, {n, 30}] (* Bruno Berselli, Jan 22 2015 *) LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 130, 2446, 21146, 117971, 494732, 1695036, 4992492, 13072917, 31153342}, 30] (* Harvey P. Dale, Jan 19 2020 *) PROG (PARI) vector(50, n, n*(n+1)*(n+2)*(5*n^6 + 30*n^5 + 50*n^4 - 37*n^2 + 6*n + 6)/360) \\ Michel Marcus, Jan 21 2015 (Magma) [(n*(n + 1)*(n + 2)*(5*n^6 + 30*n^5 + 50*n^4 -37*n^2 + 6*n + 6) / 360): n in [1..30]]; // Vincenzo Librandi, Jan 22 2015 (Sage) [binomial(n+2, 3)*(5*(n+1)^6 -25*(n+1)^4 +38*(n+1)^2 -12)/60 for n in (1..30)] # G. C. Greubel, Aug 28 2019 (GAP) List([1..30], n-> Binomial(n+2, 3)*(5*(n+1)^6 -25*(n+1)^4 +38*(n+ 1)^2 -12)/60); # G. C. Greubel, Aug 28 2019 CROSSREFS Cf. A239094 (same sequence, shifted by 1). Sequence in context: A301545 A229329 A262108 * A239094 A084641 A271758 Adjacent sequences: A250209 A250210 A250211 * A250213 A250214 A250215 KEYWORD nonn,easy AUTHOR Luciano Ancora, Jan 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 12:25 EDT 2024. Contains 373481 sequences. (Running on oeis4.)