login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084641
Binomial transform of n^7.
2
0, 1, 130, 2574, 25904, 183200, 1040112, 5076400, 22171648, 88915968, 333209600, 1181548544, 4001402880, 13033885696, 41061830656, 125666611200, 374947708928, 1093874155520, 3128047828992, 8785866391552, 24280799641600, 66124498599936, 177683966197760
OFFSET
0,3
COMMENTS
The binomial transforms of n, n^2, n^3, n^4, n^5, n^6 are A001787, A001788, A058645, A058649, A059338, A056468 respectively.
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256).
FORMULA
a(n) = n^2*(n^5 + 21*n^4 + 105*n^3 + 35*n^2 - 210*n + 112)*2^(n-7).
a(n) = Sum_{k=0..n} C(n, k)*k^7.
G.f.: x*(1+114*x+606*x^2-1168*x^3-96*x^4+816*x^5-272*x^6)/(1-2*x)^8. - Colin Barker, Sep 20 2012
MATHEMATICA
LinearRecurrence[{16, -112, 448, -1120, 1792, -1792, 1024, -256}, {0, 1, 130, 2574, 25904, 183200, 1040112, 5076400}, 41] (* Amiram Eldar, Nov 26 2021 *)
PROG
(Magma) [n^2*(n^5+21*n^4+105*n^3+35*n^2-210*n+112)*2^(n-7): n in [0..40]]; // G. C. Greubel, Mar 20 2023
(SageMath) [n^2*(n^5+21*n^4+105*n^3+35*n^2-210*n+112)*2^(n-7) for n in range(41)] # G. C. Greubel, Mar 20 2023
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 08 2003
STATUS
approved