The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084641 Binomial transform of n^7. 2
 0, 1, 130, 2574, 25904, 183200, 1040112, 5076400, 22171648, 88915968, 333209600, 1181548544, 4001402880, 13033885696, 41061830656, 125666611200, 374947708928, 1093874155520, 3128047828992, 8785866391552, 24280799641600, 66124498599936, 177683966197760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The binomial transforms of n, n^2, n^3, n^4, n^5, n^6 are A001787, A001788, A058645, A058649, A059338, A056468 respectively. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256). FORMULA a(n) = n^2*(n^5 + 21*n^4 + 105*n^3 + 35*n^2 - 210*n + 112)*2^(n-7). a(n) = Sum_{k=0..n} C(n, k)*k^7. G.f.: x*(1+114*x+606*x^2-1168*x^3-96*x^4+816*x^5-272*x^6)/(1-2*x)^8. - Colin Barker, Sep 20 2012 MATHEMATICA LinearRecurrence[{16, -112, 448, -1120, 1792, -1792, 1024, -256}, {0, 1, 130, 2574, 25904, 183200, 1040112, 5076400}, 41] (* Amiram Eldar, Nov 26 2021 *) PROG (Magma) [n^2*(n^5+21*n^4+105*n^3+35*n^2-210*n+112)*2^(n-7): n in [0..40]]; // G. C. Greubel, Mar 20 2023 (SageMath) [n^2*(n^5+21*n^4+105*n^3+35*n^2-210*n+112)*2^(n-7) for n in range(41)] # G. C. Greubel, Mar 20 2023 CROSSREFS Cf. A001015, A001787, A001788, A058645, A058649, A059338, A056468. Sequence in context: A262108 A250212 A239094 * A271758 A228997 A168124 Adjacent sequences: A084638 A084639 A084640 * A084642 A084643 A084644 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)