login
A084638
Binomial transform of (1,0,1,0,1,0,1,0,2,0,2,0,2,....).
1
1, 1, 2, 4, 8, 16, 32, 64, 129, 265, 558, 1200, 2610, 5682, 12288, 26292, 55587, 116179, 240366, 493108, 1004780, 2036692, 4112144, 8278552, 16631717, 33364381, 66863358, 133903816, 268037862, 536371734, 1073120208, 2146715436, 4294024647, 8588785575
OFFSET
0,3
COMMENTS
The sequence starting 1,2,4,... is the binomial transform of (1,1,1,1,1,1,1,2,2...) with a(n) = Sum_{k=0..6} C(n,k) + 2*Sum_{k=7..n} C(n,k) = 2^(n+1) - A008859(n). This gives the partial sums of A084637.
LINKS
FORMULA
a(n) = Sum_{k=0..3, C(n, 2*k)} + 2*Sum_{k=4..floor(n/2), C(n, 2*k)}.
a(n) = (n^6-15*n^5+115*n^4-405*n^3+964*n^2-660*n+720)/720 + 2*Sum_{k=4..floor(n/2), C(n, 2k)}.
G.f.: (1-8*x+28*x^2-56*x^3+70*x^4-56*x^5+28*x^6-8*x^7+2*x^8) / ((1-x)^7*(1-2*x)). - Colin Barker, Mar 17 2016
MATHEMATICA
Table[2^n -4 -(1/6!)*(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160) + Boole[n==0], {n, 0, 50}] (* G. C. Greubel, Mar 20 2023 *)
PROG
(PARI) Vec((1-8*x+28*x^2-56*x^3+70*x^4-56*x^5+28*x^6-8*x^7+2*x^8)/((1-x)^7*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 17 2016
(Magma) [2^n -4 -(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160)/720 + 0^n: n in [0..50]]; // G. C. Greubel, Mar 20 2023
(SageMath) [2^n -4 -(n+1)*(n^5-16*n^4+131*n^3-536*n^2+1500*n-2160)/720 + 0^n for n in range(51)] # G. C. Greubel, Mar 20 2023
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 06 2003
STATUS
approved