OFFSET
0,3
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (8,-27,50,-55,36,-13,2).
FORMULA
a(n) = Sum_{k=0..2} C(n, 2*k) + Sum_{k=6..n} C(n, k).
a(n) = 2^n - n*(n^4 - 10*n^3 + 55*n^2 - 110*n + 184)/120.
G.f.: (1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6) / ((1-x)^6*(1-2*x)). - Colin Barker, Mar 17 2016
MATHEMATICA
Table[2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120, {n, 0, 50}] (* G. C. Greubel, Mar 19 2023 *)
PROG
(PARI) Vec((1-7*x+21*x^2-35*x^3+35*x^4-21*x^5+7*x^6)/((1-x)^6*(1-2*x)) + O(x^50)) \\ Colin Barker, Mar 17 2016
(Magma) [2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120: n in [0..50]]; // G. C. Greubel, Mar 19 2023
(SageMath) [2^n -n*(n^4-10*n^3+55*n^2-110*n+184)/120 for n in range(51)] # G. C. Greubel, Mar 19 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jun 06 2003
STATUS
approved