OFFSET
0,6
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..2795
FORMULA
G.f. A(x) satisfies: A(x) = (1 + x^2 * A(x)^2) / (1 - x + x^2 + x^3 + x^4). - Ilya Gutkovskiy, Jul 20 2021
MAPLE
A023421 := proc(n)
option remember;
if n = 0 then
1;
else
procname(n-1)+add(procname(k)*procname(n-2-k), k=3..n-2) ;
end if;
end proc: # R. J. Mathar, May 01 2015
MATHEMATICA
a[0]=1; a[n_]:= a[n]=a[n-1] + Sum[a[k]*a[n-2-k], {k, 3, n-2}]; Table[a[n], {n, 0, 30}] (* modified by G. C. Greubel, Jan 01 2018 *)
PROG
(PARI) {a(n) = if(n==0, 1, a(n-1) + sum(k=3, n-2, a(k)*a(n-k-2)))};
for(n=0, 30, print1(a(n), ", ")) \\ G. C. Greubel, Jan 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved