login
A064645
Table where the entry (n,k) (n >= 0, k >= 0) gives number of Motzkin paths of the length n with the minimum peak width of k.
9
1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 9, 2, 1, 1, 1, 21, 4, 1, 1, 1, 1, 51, 8, 2, 1, 1, 1, 1, 127, 17, 4, 1, 1, 1, 1, 1, 323, 37, 8, 2, 1, 1, 1, 1, 1, 835, 82, 16, 4, 1, 1, 1, 1, 1, 1, 2188, 185, 33, 8, 2, 1, 1, 1, 1, 1, 1, 5798, 423, 69, 16, 4, 1, 1, 1, 1, 1, 1, 1, 15511, 978, 146, 32, 8, 2, 1, 1, 1, 1, 1, 1, 1, 41835, 2283, 312, 65, 16, 4, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,4
EXAMPLE
E.g., we have the following nine Motzkin paths of length 4, of which the last 4 have each peak at least of width 1 and the last 2 with each peak at least 2 dashes wide, so M(4,0) = 9, M(4,1) = 4 and M(4,2) = 2.
/\ _ _ __
/ \ /\/\ __/\ _/\_ /\__ / \_ _/ \ / \ ____
The array starts:
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
4 2 1 1 1 1 1 1 1 1 1
9 4 2 1 1 1 1 1 1 1 1
21 8 4 2 1 1 1 1 1 1 1
51 17 8 4 2 1 1 1 1 1 1
127 37 16 8 4 2 1 1 1 1 1
323 82 33 16 8 4 2 1 1 1 1
835 185 69 32 16 8 4 2 1 1 1
2188 423 146 65 32 16 8 4 2 1 1
5798 978 312 133 64 32 16 8 4 2 1
15511 2283 673 274 129 64 32 16 8 4 2
MAPLE
# trinv() given in A054425
[seq(A064645(j), j=0..104)]; A064645 := (n) -> Mpw((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n), (n-((trinv(n)*(trinv(n)-1))/2)));
C := (n, k) -> `if`((n <= 0), 0, binomial(n, k));
Mpw := proc(n, m) local i, k; 1+add(add(A001263(i, k)*C(n-(m*k), 2*i), k=1..i), i=0..floor(n/2)); end;
MATHEMATICA
trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];
CC[n_, k_] := If[n <= 0, 0, Binomial[n, k]];
a[n_] := Mpw[(((trinv[n] - 1)*(((1/2) trinv[n]) + 1)) - n), (n - ((trinv[n] (trinv[n] - 1))/2))];
Mpw[n_, m_] := 1 + Sum[Sum[If[k == 0, 0, Binomial[i - 1, k - 1] Binomial[i, k - 1]/k] CC[n - m*k, 2i], {k, 1, i}], {i, 0, n/2}];
Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Mar 06 2016, adapted from Maple *)
CROSSREFS
Column k=0: Motzkin numbers (A001006), column k=1: A004148, column k=2: A004149, column k=3: A023421, column k=4: A023422, column k=5: A023423. Uses the table A001263(n, k).
Sequence in context: A257598 A294580 A294587 * A285425 A008307 A249694
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Oct 03 2001
STATUS
approved