login
A325917
Number of Motzkin meanders of length n with an even number of humps and without peaks.
0
1, 2, 4, 8, 16, 32, 65, 136, 298, 691, 1694, 4340, 11433, 30510, 81592, 217238, 573970, 1503296, 3904181, 10065079, 25796324, 65837541, 167602092, 426213784, 1084095329, 2760717190, 7043305930, 18008810836, 46151503544, 118529776510, 304998080821
OFFSET
0,2
COMMENTS
A Motzkin meander is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), and never goes below the x-axis.
A peak is an occurrence of the pattern UD.
A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0).
LINKS
Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, Analytic Combinatorics of Lattice Paths with Forbidden Patterns: Asymptotic Aspects and Borges's Theorem, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018).
FORMULA
G.f.: (1/4)*(t^3 - 4*t^2 + 4*t - 1 + sqrt(t^6 - 4*t^5 + 4*t^4 - 2*t^3 + 4*t^2 - 4*t + 1))/((-t^3 + 4*t^2 - 4*t + 1)*t) + (1/4)*(-t^3 - 4*t^2 + 4*t - 1 + sqrt(t^6 + 4*t^5 - 4*t^4 + 2*t^3 + 4*t^2 - 4*t + 1))/((t^3 + 4*t^2 - 4*t + 1)*t).
a(n) + A325919(n) = A091964(n). - R. J. Mathar, Jan 25 2023
EXAMPLE
For n=0..5 we have a(n)=2^n because for these values we have only the humpless paths {U, H}^n. For n=6, the only "extra" path is UHDUHD. For n=7, the eight "extra" paths are UHDUHHD, UHHDUHD, UHDUHDH, UHDUHDU, UHDHUHD, UHDUUHD, HUHDUHD, UUHDUHD.
MATHEMATICA
CoefficientList[Series[(1/4)*(x^3 - 4*x^2 + 4*x - 1 + Sqrt[x^6 - 4*x^5 + 4*x^4 - 2*x^3 + 4*x^2 - 4*x + 1])/((-x^3 + 4*x^2 - 4*x + 1)*x) + (1/4)*(-x^3 - 4*x^2 + 4*x - 1 + Sqrt[x^6 + 4*x^5 - 4*x^4 + 2*x^3 + 4*x^2 - 4*x + 1])/((x^3 + 4*x^2 - 4*x + 1)*x), {x, 0, 40}], x] (* Vaclav Kotesovec, Jun 05 2019 *)
CROSSREFS
Sequence in context: A329053 A084637 A100137 * A210542 A141366 A049142
KEYWORD
nonn
AUTHOR
Andrei Asinowski, May 28 2019
STATUS
approved