login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049142
Revert transform of (1 - x + 2x^2 - x^3)/(1 + 2x^2).
0
1, 1, 2, 4, 8, 16, 32, 65, 138, 316, 792, 2142, 6052, 17316, 49160, 137109, 374650, 1004848, 2658192, 6982424, 18351272, 48607148, 130447416, 355542916, 983250704, 2749502132, 7738681064, 21826783844, 61484999000, 172649101544
OFFSET
1,3
FORMULA
Recurrence: 23*(n-2)*(n-1)*n*(2452*n^4 - 34960*n^3 + 189323*n^2 - 462197*n + 428952)*a(n) = 6*(n-2)*(n-1)*(68656*n^5 - 1081864*n^4 + 6762924*n^3 - 20914012*n^2 + 31827523*n - 18878553)*a(n-1) - 12*(n-2)*(88272*n^6 - 1611648*n^5 + 12190896*n^4 - 48980992*n^3 + 110413409*n^2 - 132553882*n + 66249909)*a(n-2) + 16*(63752*n^7 - 1387100*n^6 + 12908594*n^5 - 66715481*n^4 + 207163859*n^3 - 387112415*n^2 + 403580697*n - 181214694)*a(n-3) - 16*(n-4)*(n-2)*(19616*n^5 - 338528*n^4 + 2307676*n^3 - 7753912*n^2 + 12781431*n - 8182557)*a(n-4) + 128*(n-5)*(n-4)*(2*n - 11)*(2452*n^4 - 25152*n^3 + 99155*n^2 - 178623*n + 123570)*a(n-5). - Vaclav Kotesovec, Jan 02 2021
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(1 - x + 2x^2 - x^3)/(1 + 2x^2), {x, 0, 40}], x], x]] (* Vaclav Kotesovec, Jan 02 2021 *)
CROSSREFS
Sequence in context: A325917 A210542 A141366 * A367661 A303023 A370340
KEYWORD
nonn
STATUS
approved