OFFSET
1,3
FORMULA
Recurrence: 31*(n-2)*(n-1)*n*(472*n^3 - 4608*n^2 + 14891*n - 15930)*a(n) = 4*(n-2)*(n-1)*(12272*n^4 - 138216*n^3 + 563902*n^2 - 975864*n + 591975)*a(n-1) + 72*(n-2)*(1416*n^5 - 19488*n^4 + 106149*n^3 - 285989*n^2 + 380822*n - 200250)*a(n-2) - 8*(35872*n^6 - 619248*n^5 + 4419892*n^4 - 16684488*n^3 + 35101288*n^2 - 38981571*n + 17829450)*a(n-3) - 48*(n-4)*(3*n - 13)*(3*n - 11)*(472*n^3 - 3192*n^2 + 7091*n - 5175)*a(n-4). - Vaclav Kotesovec, Jan 02 2021
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(1 + x - 2x^2 + x^3)/(1 + 2x), {x, 0, 40}], x], x]] (* Vaclav Kotesovec, Jan 02 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved