login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354733
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=0..n-2} a(k) * a(n-k-2).
5
1, 1, 2, 4, 10, 24, 64, 168, 464, 1280, 3624, 10304, 29728, 86240, 252480, 743040, 2200640, 6547200, 19571200, 58727680, 176883200, 534476800, 1619912320, 4923070464, 14999764480, 45807916544, 140196076544, 429931051008, 1320905583616, 4065358827520
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 + x + 2 * (x * A(x))^2.
G.f.: (1 - sqrt(1 - 8 * x^2 * (1 + x))) / (4 * x^2).
a(n) ~ 5^(1/4) * (1 + sqrt(5))^(n+2) / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 04 2022
a(n) = Sum_{k=0..floor(n/2)} 2^k * binomial(k+1,n-2*k) * A000108(k). - Seiichi Manyama, Nov 05 2023
MATHEMATICA
a[0] = a[1] = 1; a[n_] := a[n] = 2 Sum[a[k] a[n - k - 2], {k, 0, n - 2}]; Table[a[n], {n, 0, 29}]
nmax = 29; CoefficientList[Series[(1 - Sqrt[1 - 8 x^2 (1 + x)])/(4 x^2), {x, 0, nmax}], x]
PROG
(PARI) a(n) = sum(k=0, n\2, 2^k*binomial(k+1, n-2*k)*binomial(2*k, k)/(k+1)); \\ Seiichi Manyama, Nov 05 2023
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 04 2022
STATUS
approved