login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049147
Revert transform of (1 - x - 4x^2 + x^3)/(1 - 6x^2).
0
1, 1, 0, 0, 2, 2, 4, 27, 78, 222, 816, 2736, 8784, 29704, 100408, 334889, 1128036, 3819368, 12912484, 43771606, 148863396, 506943540, 1729339848, 5911769970, 20242876176, 69422168880, 238465602096, 820352668488, 2826032713656
OFFSET
1,5
FORMULA
Recurrence: 321*(n-2)*(n-1)*n*(2516020*n^4 - 31491772*n^3 + 145480151*n^2 - 293162531*n + 216592068)*a(n) = 2*(n-2)*(n-1)*(2526084080*n^5 - 35406865208*n^4 + 192331223572*n^3 - 503123551024*n^2 + 629426089443*n - 298978255044)*a(n-1) - 4*(n-2)*(2425443280*n^6 - 40059841328*n^5 + 266246046192*n^4 - 906854261524*n^3 + 1658235723203*n^2 - 1527014192298*n + 542466060192)*a(n-2) + 16*(1202657560*n^7 - 24072998716*n^6 + 201898038166*n^5 - 918651777571*n^4 + 2446500580654*n^3 - 3809962287592*n^2 + 3210482881323*n - 1128729779352)*a(n-3) - 144*(n-4)*(402563200*n^6 - 7051499520*n^5 + 49625121772*n^4 - 179334004260*n^3 + 350519357389*n^2 - 350728662015*n + 139913523792)*a(n-4) + 10368*(n-5)*(n-4)*(2*n - 11)*(2516020*n^4 - 21427692*n^3 + 66100955*n^2 - 86613465*n + 39933936)*a(n-5). - Vaclav Kotesovec, Jan 02 2021
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(1 - x - 4x^2 + x^3)/(1 - 6x^2), {x, 0, 40}], x], x]] (* Vaclav Kotesovec, Jan 02 2021 *)
CROSSREFS
Sequence in context: A154594 A098335 A346714 * A189879 A189870 A257614
KEYWORD
nonn
STATUS
approved