login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346714
The numerators of the semiderivative of the Euler polynomials at x = 1 and normalized by sqrt(Pi).
3
0, 2, 2, -4, -26, 100, 74, -964, -7438, 45972, 486806, -218644, -55169462, 662381044, 328098718, -21019858108, -9375927526, 20435090284868, 1203410229242, -1072522899634372, -13371923279768194, 93925510336152268, 4777233165759979134, -179655667413148948
OFFSET
0,2
COMMENTS
The semiderivative is the fractional derivative of order 1/2. The Davison-Essex method is used.
REFERENCES
M. Davison and C. Essex, Fractional differential equations and initial value problems, The Mathematical Scientist, vol. 23, no. 2, pp. 108-116, 1998.
FORMULA
r(n) = Integral_{0..1}((d/dx)Euler(n, x) / sqrt(1 - x)).
a(n) = numerator(r(n)).
EXAMPLE
r(n) = 0, 2, 2/3, -4/5, -26/35, 100/63, 74/33, -964/143, -7438/585, 45972/935, ...
a(n) = numerator(sde_n(1) - sde_n(0)), where
sde_0(x) = 0
sde_1(x) = -2*sqrt(1-x);
sde_2(x) = (-2 - 4*x)*sqrt(1-x) / 3;
sde_3(x) = (4 + 2*x - 6*x^2)*sqrt(1-x) / 5;
sde_4(x) = (26 + 48*x + 36*x^2 - 40*x^3)*sqrt(1-x) / 35;
sde_5(x) = (-100 - 50*x + 120*x^2 + 100*x^3 - 70*x^4)*sqrt(1-x) / 63;
sde_6(x) = (-74 - 136*x - 102*x^2 + 80*x^3 + 70*x^4 - 36*x^5)*sqrt(1-x) / 33.
MAPLE
r := n -> int(diff(euler(n, x), x) / sqrt(1 - x), x = 0..1);
a := n -> numer(r(n)): seq(a(n), n=0..23);
# Alternative:
fe := n -> sqrt(Pi)*fracdiff(euler(n, x), x, 1/2):
seq(numer(simplify(subs(x=1, fe(n)))), n = 0..9);
CROSSREFS
Cf. A346709, A346710, A346711, A346712, A346715 (denominator).
Sequence in context: A006829 A154594 A098335 * A049147 A189879 A189870
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Jul 31 2021
STATUS
approved