OFFSET
0,2
COMMENTS
The semiderivative is the fractional derivative of order 1/2. The Davison-Essex method is used.
REFERENCES
M. Davison and C. Essex, Fractional differential equations and initial value problems, The Mathematical Scientist, vol. 23, no. 2, pp. 108-116, 1998.
FORMULA
r(n) = Integral_{0..1}((d/dx)Euler(n, x) / sqrt(1 - x)).
a(n) = numerator(r(n)).
EXAMPLE
r(n) = 0, 2, 2/3, -4/5, -26/35, 100/63, 74/33, -964/143, -7438/585, 45972/935, ...
a(n) = numerator(sde_n(1) - sde_n(0)), where
sde_0(x) = 0
sde_1(x) = -2*sqrt(1-x);
sde_2(x) = (-2 - 4*x)*sqrt(1-x) / 3;
sde_3(x) = (4 + 2*x - 6*x^2)*sqrt(1-x) / 5;
sde_4(x) = (26 + 48*x + 36*x^2 - 40*x^3)*sqrt(1-x) / 35;
sde_5(x) = (-100 - 50*x + 120*x^2 + 100*x^3 - 70*x^4)*sqrt(1-x) / 63;
sde_6(x) = (-74 - 136*x - 102*x^2 + 80*x^3 + 70*x^4 - 36*x^5)*sqrt(1-x) / 33.
MAPLE
r := n -> int(diff(euler(n, x), x) / sqrt(1 - x), x = 0..1);
a := n -> numer(r(n)): seq(a(n), n=0..23);
# Alternative:
fe := n -> sqrt(Pi)*fracdiff(euler(n, x), x, 1/2):
seq(numer(simplify(subs(x=1, fe(n)))), n = 0..9);
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Jul 31 2021
STATUS
approved