login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098335
Expansion of 1/sqrt(1-4x+8x^2).
7
1, 2, 2, -4, -26, -68, -76, 184, 1222, 3308, 3772, -9656, -64676, -177448, -203992, 536176, 3607622, 9968972, 11510636, -30723416, -207302156, -575382392, -666187432, 1796105744, 12142184476, 33803271032
OFFSET
0,2
COMMENTS
Central coefficients of (1+2x-x^2)^n. Binomial transform of A098331.
Diagonal of rational function 1/(1 - (x^2 + 2*x*y - y^2)). - Gheorghe Coserea, Aug 04 2018
LINKS
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
From Paul Barry, Sep 08 2004: (Start)
E.g.f. : exp(2*x)*BesselI(0, 2*I*x), I=sqrt(-1);
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(n-k,k)*2^n*(-4)^(-k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),k)*(-2)^k. (End)
E.g.f. : exp(2*x)*BesselJ(0, 2*x). - Sergei N. Gladkovskii, Aug 22 2012
It appears that a(j+2) = (2*(2*j+1)*a(j+1))/(j+1)-(8*j*a(j))/(j+1), in case of re-indexing from 0 to 1. - Alexander R. Povolotsky, Aug 22 2012
D-finite with recurrence: a(n+2) = ((4*n+6)*a(n+1) - 8*(n+1)*a(n))/(n+2); a(0)=1,a(1)=2. - Sergei N. Gladkovskii, Aug 22 2012
a(n) = 2^n*_2F_1(1/2-n/2, -n/2, 1, -1), where _2F_1(a,b;c;x) is the hypergeometric function. - Alexander R. Povolotsky, Aug 22 2012
MATHEMATICA
a[n_] := 2^n*Hypergeometric2F1[1/2 - n/2, -n/2, 1, -1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 05 2012, after Alexander R. Povolotsky *)
CoefficientList[Series[1/Sqrt[1 - 4*x + 8*x^2], {x, 0, 50}], x] (* G. C. Greubel, Feb 19 2017 *)
PROG
(PARI) x='x+O('x^25); Vec(1/sqrt(1 - 4*x + 8*x^2)) \\ G. C. Greubel, Feb 19 2017
CROSSREFS
Sequence in context: A176161 A006829 A154594 * A346714 A049147 A189879
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 03 2004
STATUS
approved