OFFSET
0,3
COMMENTS
Central coefficients of (1 + x - 2*x^2)^n.
Binomial transform of 1/sqrt(1+8*x^2), or (1,0,-4,0,24,0,...).
Binomial transform is A098336.
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, ex. 7.56, p. 575.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(x)*BesselI(0, 2*sqrt(-2)*x);
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2*k) * binomial(2*k,k) * (-2)^k.
a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(n-k,k) * (-2)^k.
a(n) = (-1)^n * Sum_{k=0..n} binomial(n,k)^2 * (-2)^k.
G.f.: A(x) = 1/(2*T(0)+3*x-1) where T(k) = 1 - 2*x/(1 + x/T(k+1)); (continued fraction, 2-step ). - Sergei N. Gladkovskii, Aug 23 2012
D-finite with recurrence: a(n+2) = ((2*n+3)*a(n+1))/(n+2) - (9*(n+1)*a(n))/(n+2) with a(0)=1, a(1)=1. (See Graham, Knuth, and Patashnik). - Alexander R. Povolotsky, Aug 23 2012
a(n) = hypergeom([1/2-n/2, -n/2], [1], -8). - Peter Luschny, Sep 18 2014
a(n) = (3/2)*(9/2)^n*Sum_{k >= 0} (-1/2)^k*binomial(n+k,k)^2. - Peter Bala, Mar 02 2017
MAPLE
a := n -> hypergeom([1/2-n/2, -n/2], [1], -8);
seq(round(evalf(a(n), 99)), n=0..30); # Peter Luschny, Sep 18 2014
MATHEMATICA
Table[(-3)^n*LegendreP[n, -1/3], {n, 0, 20}] (* Vaclav Kotesovec, Jul 23 2013 *)
CoefficientList[Series[1/Sqrt[1 - 2*x + 9*x^2], {x, 0, 50}], x] (* G. C. Greubel, Feb 18 2017 *)
PROG
(PARI) x='x+O('x^25); Vec(1/sqrt(1 - 2*x + 9*x^2)) \\ G. C. Greubel, Feb 18 2017
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 03 2004
STATUS
approved