

A092528


a(1) = 1; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime.


14



1, 1, 3, 11, 1, 3, 3, 53, 13, 39, 9, 3, 21, 53, 79, 11, 19, 59, 27, 49, 21, 23, 211, 153, 189, 3, 161, 121, 167, 183, 193, 77, 21, 349, 107, 129, 343, 119, 241, 143, 37, 77, 31, 159, 183, 531, 1517, 7, 59, 159, 123, 9, 1513, 203, 343, 59, 9, 999, 813, 421, 209, 517, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..63.


EXAMPLE

The first few terms are 1,1,3,11,1,3,3,53,13,39,9,3. The next integer you can concatenate to the end of this to get a prime is 21 so the next term is 21. If you require terms to have all digits odd you would get 399 instead, giving A069604.


MATHEMATICA

nn[a_] := For[b = 1, ! PrimeQ[n], b = b + 1, n = a*10^Floor[Log[10, b] + 1]] (* o get the next number in the sequence if a is the concatenation of all previous. *) nnt[m_] := (t = 1; Table[c = nnn[t]; t = c[[2]]; c[[1]], {m}]) (* To get a table of the first n terms, ignoring a(1)=1*)
a[1] = 1; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n  1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 63}] (* Robert G. Wilson v, Aug 05 2005 *)


CROSSREFS

Cf. A033680, A074336, A069602, A069604, A069603, A069605, A069606, A069607, A069608, A069609, A069610, A069611, A111525.
Sequence in context: A183130 A117526 A051498 * A069604 A098332 A096663
Adjacent sequences: A092525 A092526 A092527 * A092529 A092530 A092531


KEYWORD

base,nonn


AUTHOR

Christer Mauritz Blomqvist (MauritzTortoise(AT)hotmail.com), Apr 08 2004


STATUS

approved



