|
|
A092527
|
|
If M(n) is the n-th Mersenne prime, then a(n) is the smallest positive integer such that 2*a(n)*M(n)*M(n+1)-1 is prime.
|
|
1
|
|
|
1, 1, 1, 12, 1, 25, 3, 13, 7, 153, 43, 423, 52, 916, 136, 1111, 1270, 442, 2737, 975
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
a(21) > 12000, a(22)=6669, a(23) > 10000, a(24)=5970. - Ray G. Opao, Apr 15 2004
|
|
LINKS
|
|
|
EXAMPLE
|
a(4) = 12: 2(12)(2^7-1)(2^13-1)-1 = 24(127)(8191)-1 = 24966167, which is prime.
|
|
MATHEMATICA
|
p = { (* the list of Mersenne exponents in A000043 *) }; f[n_] := Block[{k = 1, q = 2^p[[n]] - 1, r = 2^p[[n + 1]] - 1}, While[ !PrimeQ[2k*q*r - 1], k++ ]; k]; Do[ Print[ f[n]], {n, 25}] (* Robert G. Wilson v, Apr 10 2004 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|