login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092525
To binary representation of n, append as many ones as there are trailing zeros.
1
1, 5, 3, 19, 5, 13, 7, 71, 9, 21, 11, 51, 13, 29, 15, 271, 17, 37, 19, 83, 21, 45, 23, 199, 25, 53, 27, 115, 29, 61, 31, 1055, 33, 69, 35, 147, 37, 77, 39, 327, 41, 85, 43, 179, 45, 93, 47, 783, 49, 101, 51, 211, 53, 109, 55, 455, 57, 117, 59, 243, 61, 125, 63, 4159
OFFSET
1,2
COMMENTS
a(n) = (n+1)*A006519(n)-1;
a(2*n-1) = 2*n-1, a(2*n) > 4*n.
EXAMPLE
n=20='10100'='101'00' -> a(20)='101'00'11'='1010011'=83.
MATHEMATICA
bra1[n_]:=Module[{idn2=IntegerDigits[n, 2]}, FromDigits[Join[ idn2, Table[1, {IntegerExponent[FromDigits[idn2]]}]], 2]]; Array[bra1, 70] (* Harvey P. Dale, Sep 30 2012 *)
PROG
(Haskell)
a092525 n = f n n where
f x y = if m == 0 then f x' (2 * y + 1) else y
where (x', m) = divMod x 2
-- Reinhard Zumkeller, Oct 06 2012
(Python)
def A092525(n): return (n+1)*(~n&n-1)+n # Chai Wah Wu, Jul 07 2022
CROSSREFS
Sequence in context: A349118 A073845 A169697 * A101367 A338790 A256565
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 07 2004
STATUS
approved