

A092525


To binary representation of n, append as many ones as there are trailing zeros.


1



1, 5, 3, 19, 5, 13, 7, 71, 9, 21, 11, 51, 13, 29, 15, 271, 17, 37, 19, 83, 21, 45, 23, 199, 25, 53, 27, 115, 29, 61, 31, 1055, 33, 69, 35, 147, 37, 77, 39, 327, 41, 85, 43, 179, 45, 93, 47, 783, 49, 101, 51, 211, 53, 109, 55, 455, 57, 117, 59, 243, 61, 125, 63, 4159
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) = (n+1)*A006519(n)1;
a(2*n1) = 2*n1, a(2*n) > 4*n.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for sequences related to binary expansion of n


EXAMPLE

n=20='10100'='101'00' > a(20)='101'00'11'='1010011'=83.


MATHEMATICA

bra1[n_]:=Module[{idn2=IntegerDigits[n, 2]}, FromDigits[Join[ idn2, Table[1, {IntegerExponent[FromDigits[idn2]]}]], 2]]; Array[bra1, 70] (* Harvey P. Dale, Sep 30 2012 *)


PROG

(Haskell)
a092525 n = f n n where
f x y = if m == 0 then f x' (2 * y + 1) else y
where (x', m) = divMod x 2
 Reinhard Zumkeller, Oct 06 2012


CROSSREFS

Cf. A007814, A007088.
Sequence in context: A075453 A073845 A169697 * A101367 A256565 A298098
Adjacent sequences: A092522 A092523 A092524 * A092526 A092527 A092528


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Apr 07 2004


STATUS

approved



