%I #11 Jul 08 2022 08:22:59
%S 1,5,3,19,5,13,7,71,9,21,11,51,13,29,15,271,17,37,19,83,21,45,23,199,
%T 25,53,27,115,29,61,31,1055,33,69,35,147,37,77,39,327,41,85,43,179,45,
%U 93,47,783,49,101,51,211,53,109,55,455,57,117,59,243,61,125,63,4159
%N To binary representation of n, append as many ones as there are trailing zeros.
%C a(n) = (n+1)*A006519(n)-1;
%C a(2*n-1) = 2*n-1, a(2*n) > 4*n.
%H Harvey P. Dale, <a href="/A092525/b092525.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%e n=20='10100'='101'00' -> a(20)='101'00'11'='1010011'=83.
%t bra1[n_]:=Module[{idn2=IntegerDigits[n,2]},FromDigits[Join[ idn2, Table[1,{IntegerExponent[FromDigits[idn2]]}]],2]]; Array[bra1,70] (* _Harvey P. Dale_, Sep 30 2012 *)
%o (Haskell)
%o a092525 n = f n n where
%o f x y = if m == 0 then f x' (2 * y + 1) else y
%o where (x', m) = divMod x 2
%o -- _Reinhard Zumkeller_, Oct 06 2012
%o (Python)
%o def A092525(n): return (n+1)*(~n&n-1)+n # _Chai Wah Wu_, Jul 07 2022
%Y Cf. A007814, A007088.
%K nonn
%O 1,2
%A _Reinhard Zumkeller_, Apr 07 2004