login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074336 a(1) = 1; a(n) is smallest number > a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime. 16
1, 3, 7, 11, 13, 29, 37, 113, 121, 149, 151, 201, 219, 251, 451, 453, 573, 669, 689, 697, 749, 913, 969, 1157, 1269, 1503, 1531, 1809, 2087, 2163, 2179, 2511, 2537, 2599, 2709, 2789, 2929, 3243, 3989, 4033, 4151, 5019, 5389, 5423, 5599, 6179, 6433, 8267 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Paolo P. Lava and Vincenzo Librandi, Table of n, a(n) for n = 1..200 (first 100 terms from Paolo P. Lava)

MAPLE

with(numtheory);

S:=proc(s) local w; w:=convert(s, base, 10); sum(w[j], j=1..nops(w)); end:

T:=proc(t) local w, x, y; x:=t; y:=0; while x>0 do x:=trunc(x/10); y:=y+1; od; end:

P:=proc(q) local a, b, c, j, n; a:=1; j:=2; print(1);

for n from 1 to q do b:=T(j); c:=a*10^b+j;

if isprime(c) then a:=a*10^b+j; print(j); fi;

j:=j+1; od; print(); end: P(10^6); # Paolo P. Lava, Mar 21 2014

MATHEMATICA

a[1] = 1; a[n_] := a[n] = Block[{k = a[n - 1] + 1 + Mod[a[n - 1], 2], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 48}] (* Robert G. Wilson v *)

CROSSREFS

Cf. A033680, A092528, A069602, A074338, A074339, A074340, A074341, A074342, A074343, A074344, A074345, A074346.

Sequence in context: A114273 A173295 A191040 * A086475 A154832 A164568

Adjacent sequences:  A074333 A074334 A074335 * A074337 A074338 A074339

KEYWORD

nonn,base

AUTHOR

Zak Seidov, Sep 23 2002

EXTENSIONS

More terms from Robert G. Wilson v, Aug 05 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 07:39 EDT 2021. Contains 348048 sequences. (Running on oeis4.)