login
A069609
a(1) = 7; a(n) = smallest number such that the juxtaposition a(1)a(2)...a(n) is a prime.
21
7, 1, 9, 3, 3, 3, 17, 7, 11, 37, 11, 9, 31, 9, 17, 13, 93, 3, 167, 67, 119, 93, 31, 33, 143, 99, 297, 91, 69, 83, 1, 33, 23, 27, 199, 333, 123, 549, 17, 67, 141, 33, 39, 167, 21, 217, 279, 419, 69, 517, 71, 451, 171, 39, 191, 93, 43, 11, 303, 777, 33, 67, 207, 369, 489
OFFSET
1,1
LINKS
EXAMPLE
a(7) = 17 and the number 71933317 is a prime.
MATHEMATICA
a[1] = 7; a[n_] := a[n] = Block[{k = 1, c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 67}] (* Robert G. Wilson v, Aug 05 2005 *)
nxt[{j_, a_}]:=Module[{k=1}, While[CompositeQ[j*10^IntegerLength[k]+k], k++]; {j*10^IntegerLength[k]+k, k}]; NestList[nxt, {7, 7}, 70][[All, 2]] (* Harvey P. Dale, May 06 2022 *)
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Mar 26 2002
EXTENSIONS
More terms from Jason Earls, Jun 13 2002
STATUS
approved