login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046257
a(1) = 7; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
12
7, 9, 19, 27, 47, 57, 61, 81, 179, 211, 251, 273, 373, 477, 581, 753, 847, 909, 909, 939, 957, 1173, 1311, 1343, 1543, 1619, 1693, 1739, 1879, 1971, 2141, 2523, 2653, 2729, 2863, 3201, 3293, 3411, 3621, 3753, 5023, 5421, 5459, 5481, 6403, 6827, 7041, 7669
OFFSET
1,1
COMMENTS
All terms must be odd. - Harvey P. Dale, Oct 21 2023
LINKS
MAPLE
A:= 7: x:= 7: count:= 1:
for i from 7 by 2 while count < 10000 do
while isprime(x*10^(1+ilog10(i))+i) do
x:= x*10^(1+ilog10(i))+i; A:= A, i; count:= count+1;
od od:
A; # Robert Israel, Jan 21 2024
MATHEMATICA
a[1] = 7; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k += 2]; k]; Table[ a[n], {n, 46}] (* Robert G. Wilson v, Aug 05 2005 *)
nxt[{j_, a_}]:=Module[{k=a}, While[CompositeQ[j*10^IntegerLength[k]+k], k+=2]; {j*10^IntegerLength[k]+k, k}]]; NestList[nxt, {7, 7}, 50][[;; , 2]] (* Harvey P. Dale, Oct 21 2023 *)
KEYWORD
nonn
AUTHOR
Patrick De Geest, May 15 1998
STATUS
approved