login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046256
a(1) = 6; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
12
6, 7, 7, 9, 27, 59, 69, 181, 201, 257, 267, 399, 573, 603, 861, 901, 923, 1021, 1133, 1239, 1251, 1519, 1589, 1729, 1863, 1901, 2541, 3001, 3017, 3049, 3243, 4407, 4481, 5457, 5839, 5889, 5919, 6159, 6201, 6293, 6577, 6603, 6969, 7217, 8131, 8981, 9033
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..441 (terms 1..100 from Harvey P. Dale)
MATHEMATICA
a[1] = 6; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k ++ ]; k]; Table[ a[n], {n, 47}] (* Robert G. Wilson v, Aug 05 2005 *)
nxt[{j_, a_}]:=Module[{k=a}, While[!PrimeQ[j*10^IntegerLength[k]+k], k++]; {j*10^IntegerLength[k]+k, k}]; Transpose[NestList[nxt, {6, 6}, 50]][[2]] (* Harvey P. Dale, May 07 2016 *)
PROG
(Python)
from sympy import isprime
def aupton(terms):
alst, astr = [6], "6"
for n in range(2, terms+1):
an = alst[-1]
while not isprime(int(astr+str(an))): an += 1
alst, astr = alst + [an], astr + str(an)
return alst
print(aupton(62)) # Michael S. Branicky, Jun 07 2021
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1998
STATUS
approved