|
|
A033679
|
|
a(1) = 2; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
|
|
14
|
|
|
2, 3, 3, 3, 3, 21, 53, 69, 81, 139, 143, 223, 233, 261, 261, 399, 553, 609, 659, 673, 1017, 1187, 1357, 1571, 1641, 1839, 2151, 2191, 2499, 2511, 2607, 2667, 2681, 3081, 3351, 4291, 4319, 4353, 4489, 4733, 4819, 6003, 6011, 6631, 6797, 7113, 7429, 7547, 7651
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..300
|
|
MAPLE
|
R:= 2, 3: p:= 23: x:= 3:
for count from 3 to 100 do
for y from x by 2 do
if isprime(10^(1+ilog10(y))*p+y) then
R:= R, y; p:= 10^(1+ilog10(y))*p+y; x:= y;
break
fi
od od:
R; # Robert Israel, Nov 22 2020
|
|
MATHEMATICA
|
a[1] = 2; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k ++ ]; k]; Table[ a[n], {n, 47}] (* Robert G. Wilson v, Aug 05 2005 *)
|
|
CROSSREFS
|
Cf. A069603, A074338, A033680, A033681, A046254, A046255, A046256, A046257, A046258, A046259, A111524.
Sequence in context: A210794 A268607 A069603 * A051670 A089702 A089336
Adjacent sequences: A033676 A033677 A033678 * A033680 A033681 A033682
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
More terms from Patrick De Geest, May 15 1998
More terms from Robert G. Wilson v, Aug 05 2005
|
|
STATUS
|
approved
|
|
|
|