login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033679
a(1) = 2; a(n) is smallest number >= a(n-1) such that the juxtaposition a(1)a(2)...a(n) is a prime.
14
2, 3, 3, 3, 3, 21, 53, 69, 81, 139, 143, 223, 233, 261, 261, 399, 553, 609, 659, 673, 1017, 1187, 1357, 1571, 1641, 1839, 2151, 2191, 2499, 2511, 2607, 2667, 2681, 3081, 3351, 4291, 4319, 4353, 4489, 4733, 4819, 6003, 6011, 6631, 6797, 7113, 7429, 7547, 7651
OFFSET
1,1
LINKS
MAPLE
R:= 2, 3: p:= 23: x:= 3:
for count from 3 to 100 do
for y from x by 2 do
if isprime(10^(1+ilog10(y))*p+y) then
R:= R, y; p:= 10^(1+ilog10(y))*p+y; x:= y;
break
fi
od od:
R; # Robert Israel, Nov 22 2020
MATHEMATICA
a[1] = 2; a[n_] := a[n] = Block[{k = a[n - 1], c = IntegerDigits @ Table[ a[i], {i, n - 1}]}, While[ !PrimeQ[ FromDigits @ Flatten @ Append[c, IntegerDigits[k]]], k ++ ]; k]; Table[ a[n], {n, 47}] (* Robert G. Wilson v, Aug 05 2005 *)
KEYWORD
nonn,base
EXTENSIONS
More terms from Patrick De Geest, May 15 1998
More terms from Robert G. Wilson v, Aug 05 2005
STATUS
approved