OFFSET
0,2
COMMENTS
Central coefficients of (1+2x-4x^2)^n. Binomial transform of A098334.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(2x)BesselI(0, 4*I*x), I=sqrt(-1);
a(n) = sum{k=0..floor(n/2), binomial(n, k)binomial(n-k, k)2^n(-1)^k};
a(n) = sum{k=0..n, binomial(2k, k)binomial(k, n-k)(-5)^(n-k)}.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)binomial(2(n-k), n)(-5)^k. - Paul Barry, Sep 08 2004.
D-finite with recurrence: n*a(n) +2*(-2*n+1)*a(n-1) +20*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
Lim sup n->infinity |a(n)|^(1/n) = 2*sqrt(5). - Vaclav Kotesovec, Feb 08 2014
MATHEMATICA
Table[Sum[Binomial[n, k]*Binomial[2*(n-k), n]*(-5)^k, {k, 0, Floor[n/2]}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 08 2014 *)
CoefficientList[Series[1/Sqrt[1-4x+20x^2], {x, 0, 30}], x] (* Harvey P. Dale, Jul 29 2015 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 03 2004
STATUS
approved