login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098338
Expansion of 1/sqrt(1-6x+13x^2).
1
1, 3, 7, 9, -21, -207, -911, -2769, -5213, 2457, 74997, 400491, 1409109, 3323583, 2219343, -27453951, -186624333, -750905127, -2088947819, -2955863589, 8506703569, 86421384387, 401183114163, 1280139325101, 2522745571021
OFFSET
0,2
COMMENTS
Binomial transform of A098335. Second binomial transform of A098331.
Central coefficients of (1+3x-x^2)^n.
LINKS
Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
FORMULA
E.g.f.: exp(3*x)*BesselI(0, 2*I*x), I=sqrt(-1).
a(n) = Sum{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k)*3^n*(-9)^(-k).
a(n) = Sum{k=0..floor(n/2)} binomial(n, 2k)*binomial(2k, k)*3^n*(-9)^(-k).
D-finite with recurrence: n*a(n) +3*(1-2*n)*a(n-1) +13*(n-1)*a(n-2)=0. - R. J. Mathar, Sep 26 2012
Recurrence follows from the differential equation (13x-3) g(x) + (13x^2-6x+1) g'(x) = 0 satisfied by the generating function. - Robert Israel, Mar 02 2017
Lim sup n->infinity |a(n)|^(1/n) = sqrt(13). - Vaclav Kotesovec, Sep 29 2013
MAPLE
f:= gfun:-rectoproc({(13*n+13)*a(n)+(-9-6*n)*a(n+1)+(n+2)*a(n+2), a(0)=1, a(1)=3}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Mar 02 2017
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-6*x+13*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 29 2013 *)
CROSSREFS
Sequence in context: A018267 A099886 A118564 * A033958 A352016 A018827
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 03 2004
STATUS
approved