Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Jan 30 2020 21:29:15
%S 1,2,2,-4,-26,-68,-76,184,1222,3308,3772,-9656,-64676,-177448,-203992,
%T 536176,3607622,9968972,11510636,-30723416,-207302156,-575382392,
%U -666187432,1796105744,12142184476,33803271032
%N Expansion of 1/sqrt(1-4x+8x^2).
%C Central coefficients of (1+2x-x^2)^n. Binomial transform of A098331.
%C Diagonal of rational function 1/(1 - (x^2 + 2*x*y - y^2)). - _Gheorghe Coserea_, Aug 04 2018
%H G. C. Greubel, <a href="/A098335/b098335.txt">Table of n, a(n) for n = 0..1000</a>
%H Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
%F From _Paul Barry_, Sep 08 2004: (Start)
%F E.g.f. : exp(2*x)*BesselI(0, 2*I*x), I=sqrt(-1);
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(n-k,k)*2^n*(-4)^(-k).
%F a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),k)*(-2)^k. (End)
%F E.g.f. : exp(2*x)*BesselJ(0, 2*x). - _Sergei N. Gladkovskii_, Aug 22 2012
%F It appears that a(j+2) = (2*(2*j+1)*a(j+1))/(j+1)-(8*j*a(j))/(j+1), in case of re-indexing from 0 to 1. - _Alexander R. Povolotsky_, Aug 22 2012
%F D-finite with recurrence: a(n+2) = ((4*n+6)*a(n+1) - 8*(n+1)*a(n))/(n+2); a(0)=1,a(1)=2. - _Sergei N. Gladkovskii_, Aug 22 2012
%F a(n) = 2^n*_2F_1(1/2-n/2, -n/2, 1, -1), where _2F_1(a,b;c;x) is the hypergeometric function. - _Alexander R. Povolotsky_, Aug 22 2012
%t a[n_] := 2^n*Hypergeometric2F1[1/2 - n/2, -n/2, 1, -1]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Sep 05 2012, after _Alexander R. Povolotsky_ *)
%t CoefficientList[Series[1/Sqrt[1 - 4*x + 8*x^2], {x,0,50}], x] (* _G. C. Greubel_, Feb 19 2017 *)
%o (PARI) x='x+O('x^25); Vec(1/sqrt(1 - 4*x + 8*x^2)) \\ _G. C. Greubel_, Feb 19 2017
%K easy,sign
%O 0,2
%A _Paul Barry_, Sep 03 2004