The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346715 The denominators of the semiderivative of the Euler polynomials at x = 1 and normalized by sqrt(Pi). 3
 1, 1, 3, 5, 35, 63, 33, 143, 585, 935, 4199, 399, 35581, 76475, 11475, 114057, 13485, 4023459, 55825, 6094011, 16111095, 12540957, 122960435, 467883, 671993075, 11586393, 109938507, 56448551, 15260511805, 3338985045, 117979542989, 25843026187, 452039265909 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The semiderivative is the fractional derivative of order 1/2. The Davison-Essex method is used. See A346714 for formulas and references. LINKS Table of n, a(n) for n=0..32. MAPLE r := n -> int(diff(euler(n, x), x) / sqrt(1 - x), x = 0..1); a := n -> denom(r(n)): seq(a(n), n = 0..23); # Alternative: fe := n -> sqrt(Pi)*fracdiff(euler(n, x), x, 1/2): seq(denom(simplify(subs(x=1, fe(n)))), n = 0..23); CROSSREFS Cf. A346709, A346710, A346711, A346712, A346714 (numerator). Sequence in context: A162444 A305858 A261659 * A259853 A052468 A055786 Adjacent sequences: A346712 A346713 A346714 * A346716 A346717 A346718 KEYWORD nonn,frac AUTHOR Peter Luschny, Jul 31 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 20:35 EDT 2024. Contains 376002 sequences. (Running on oeis4.)