login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346713 Decimal expansion of sqrt(log 2). 1
8, 3, 2, 5, 5, 4, 6, 1, 1, 1, 5, 7, 6, 9, 7, 7, 5, 6, 3, 5, 3, 1, 6, 4, 6, 4, 4, 8, 9, 5, 2, 0, 1, 0, 4, 7, 6, 3, 0, 5, 8, 8, 8, 5, 2, 2, 6, 4, 4, 4, 0, 7, 2, 9, 1, 6, 6, 8, 2, 9, 1, 1, 7, 2, 3, 4, 0, 7, 9, 4, 3, 5, 1, 9, 7, 3, 0, 4, 6, 3, 7, 1, 4, 8, 9, 9, 8, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Represents a transcendental number.

REFERENCES

Ludwig Seidel, Ueber eine Darstellung des Kreisbogens, des Logarithmus und des elliptischen Integrales erster Art durch unendliche Producte, Borchardt J., (1871), vol. 73, pp. 273-291.

LINKS

Table of n, a(n) for n=0..87.

Index entries for transcendental numbers

FORMULA

Equals Product_{k>=1} (2/(2^(1/2^k) + 1))^(1/2).

Equals sqrt(2*arccoth(3)) = sqrt(A002162).

EXAMPLE

0.8325546111576977563531646448952010476305888522644407291668291172340794351973...

MAPLE

Digits := 120; sqrt(log(2)): evalf(%)*10^91:

ListTools:-Reverse(convert(floor(%), base, 10));

MATHEMATICA

RealDigits[Sqrt[Log[2]], 10, 100][[1]] (* Amiram Eldar, Sep 01 2021 *)

PROG

(Julia)

using Nemo

R = RealField(305); _1 = R(1); _2 = R(2); H = R(1/2)

p = prod((_2/(_2^(_1/_2^k) + 1))^H for k in 1:300)

println(p)

CROSSREFS

Cf. A002162.

Sequence in context: A346718 A119277 A273556 * A154014 A063568 A302138

Adjacent sequences: A346710 A346711 A346712 * A346714 A346715 A346716

KEYWORD

nonn,cons

AUTHOR

Peter Luschny, Sep 01 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 21:40 EST 2023. Contains 359905 sequences. (Running on oeis4.)