login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346711
Numerators of a fractional order v differentiation of the Bernoulli polynomials with v = 1/2, evaluated at x = 1 and normalized by sqrt(Pi).
5
1, 3, 5, 1, -23, -5, 5, 521, -1357, -97, 35713, 538019, -45411, -109923, 2173451, 12637, -3109585853579, -2750583611, 16296301543, 41079818933, -154715264921, -2559782104871, 201299334909241, 8079972368723417, -2104258043122757, -118316122614712593, 418629788956582261
OFFSET
0,2
COMMENTS
a(n) = numerator(r(n)). Here r(n) = Pi^(1/2)*D^(1/2)(B(n, x))|x=1, where D^v denotes a fractional differentiation operator of order v and f(x)|x=k denotes the evaluation of f(x) at k. B(n, x) are the Bernoulli polynomials. The operator D^v is defined by linear extension of D^(v)(x^n) = (Gamma(n + 1)/Gamma(n + 1 - v)) * x^(n - v) to polynomials.
A more sophisticated definition of a semiderivative of the Bernoulli polynomials is in A346709.
EXAMPLE
r(n) = 1, 3/2, 5/6, 1/5, -23/210, -5/63, 5/66, 521/6435, -1357/12870, -97/663, 35713/149226, ...
a(n) = numerator(sds_n(1)), where
sds_0(x) = 1/x^(1/2);
sds_1(x) = (1/2)*(-1 + 4*x)/x^(1/2);
sds_2(x) = (1/6)*(1 - 12*x + 16*x^2)/x^(1/2);
sds_3(x) = (1/5)*(5 - 20*x + 16*x^2)*x^(1/2);
sds_4(x) = (1/210)*(-7 + 560*x^2 - 1344*x^3 + 768*x^4)/x^(1/2);
sds_5(x) = (1/63)*(-21 + 336*x^2 - 576*x^3 + 256*x^4)*x^(1/2);
sds_6(x) = (1/462)*(11 - 616*x^2 + 4224*x^4 - 5632*x^5 + 2048*x^6)/x^(1/2).
MAPLE
A346711frac := proc(n) local der, ext, p, v;
der := (d, n) -> (GAMMA(n+1)/GAMMA(n+1-d))*x^(n-d):
ext := (d, p) -> add(coeff(p, x, k)*der(d, k), k=min(floor(d), 1)..degree(p)):
p := ext(1/2, bernoulli(n, x)):
v := sqrt(Pi)*subs(x=1, p) end:
a := n -> numer(A346711frac(n)):
seq(a(n), n=0..26);
CROSSREFS
A346712 (denominator), A346709.
Sequence in context: A265649 A216520 A204161 * A278968 A220110 A327693
KEYWORD
sign,frac
AUTHOR
Peter Luschny, Jul 30 2021
STATUS
approved