OFFSET
0,4
COMMENTS
Here we consider the directed graphs of partial functions on {1,2,...,n} where the undefined points are mapped to a special value (forming a forest).
Row sums = (n+1)^n.
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132.
FORMULA
E.g.f.: exp(T(x))/(1 - T(x))^y where T(x) is the e.g.f. for A000169.
EXAMPLE
1,
1, 1,
3, 5, 1,
16, 35, 12, 1,
125, 328, 149, 22, 1,
1296, 3894, 2125, 425, 35, 1,
16807, 56221, 35044, 8555, 970, 51, 1
MATHEMATICA
nn=6; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[Exp[t]/(1-t)^y, {x, 0, nn}], {x, y}] //Grid
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Sep 08 2012
STATUS
approved