login
A216520
Triangular array read by rows, T(n,k) = number of partial functions on {1,2,...,n} with exactly k cycles.
1
1, 1, 1, 3, 5, 1, 16, 35, 12, 1, 125, 328, 149, 22, 1, 1296, 3894, 2125, 425, 35, 1, 16807, 56221, 35044, 8555, 970, 51, 1, 262144, 958152, 661878, 186809, 26180, 1918, 70, 1, 4782969, 18849384, 14145858, 4467092, 731059, 66836, 3430, 92, 1
OFFSET
0,4
COMMENTS
Here we consider the directed graphs of partial functions on {1,2,...,n} where the undefined points are mapped to a special value (forming a forest).
Row sums = (n+1)^n.
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 132.
FORMULA
E.g.f.: exp(T(x))/(1 - T(x))^y where T(x) is the e.g.f. for A000169.
EXAMPLE
1,
1, 1,
3, 5, 1,
16, 35, 12, 1,
125, 328, 149, 22, 1,
1296, 3894, 2125, 425, 35, 1,
16807, 56221, 35044, 8555, 970, 51, 1
MATHEMATICA
nn=6; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[Exp[t]/(1-t)^y, {x, 0, nn}], {x, y}] //Grid
CROSSREFS
Sequence in context: A084833 A204020 A265649 * A204161 A346711 A278968
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Sep 08 2012
STATUS
approved