login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204020
Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of min(i,j)^2 (A106314).
2
1, -1, 3, -5, 1, 15, -31, 14, -1, 105, -247, 157, -30, 1, 945, -2433, 1892, -553, 55, -1, 10395, -28653, 25573, -9620, 1554, -91, 1, 135135, -393279, 388810, -173773, 37550, -3738, 140, -1, 2027025, -6169455
OFFSET
1,3
COMMENTS
Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.
Constant term of p(n,x) is A001147(n), and the coefficient of the linear term is A000330(n). - Enrique Pérez Herrero, Feb 20 2013
REFERENCES
(For references regarding interlacing roots, see A202605.)
EXAMPLE
Top of the array:
1.....-1
3.....-5.....1
15....-31....14....-1
105...-247...157...-30...1
MATHEMATICA
f[i_, j_] := Min[i^2, j^2];
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[6]] (* 6x6 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 15}, {i, 1, n}]] (* A106314 *)
p[n_] := CharacteristicPolynomial[m[n], x];
c[n_] := CoefficientList[p[n], x]
TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
Table[c[n], {n, 1, 12}]
Flatten[%] (* A204020 *)
TableForm[Table[c[n], {n, 1, 10}]]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Clark Kimberling, Jan 11 2012
STATUS
approved