login
A346708
a(n) is the least k > 1 such that p(n) divides p(n^k), or 0 if no such k exists (p = A000041).
0
2, 3, 2, 3, 3, 6, 7, 2, 10
OFFSET
1,1
EXAMPLE
a(8) = 2 because p(8) = 22 divides p(8^2) = 1741630.
MATHEMATICA
a[n_] := Module[{k = 2, p = PartitionsP[n]}, While[! Divisible[PartitionsP[n^k], p], k++]; k]; Array[a, 9] (* Amiram Eldar, Aug 04 2021 *)
PROG
(PARI) a(n)=my(t=2); while(numbpart(n^t)%numbpart(n), t++); t
CROSSREFS
Cf. A000041.
Sequence in context: A003051 A377774 A305866 * A328406 A257396 A293519
KEYWORD
nonn,hard,more
AUTHOR
Altug Alkan, Jul 30 2021
STATUS
approved