This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A293519 Number of surviving (but not bifurcating) odd nodes at generation n in the binary tree of persistently squarefree numbers (see A293230). 6
 0, 0, 0, 1, 1, 0, 2, 3, 2, 3, 3, 8, 10, 11, 17, 20, 31, 38, 46, 67, 90, 116, 160, 220, 280, 397, 509, 685, 927, 1280, 1663, 2248, 3056, 4050, 5383, 7339, 9714, 13029, 17714, 23738, 31791, 42793, 57473, 77175, 103839, 140100, 187495, 252068, 338257, 454325, 611101, 820924 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS FORMULA a(n) = Sum_{k=(2^n)..(2^(1+n))-1)] abs(A293233(k)) * [1==(A008966(2k)] * [0==A008966(1+2k))]. A293518(n) + a(n) = A293521(n). A293518(n) - a(n) = A293517(n). EXAMPLE a(3) = 1 because in the binary tree illustrated in A293230, there is only one odd node at the level 3 (namely, the node 13) that spawns just one offspring. PROG (PARI) \\ A naive algorithm (see A293518 for a better program): up_to_level = 28; up_to = (2^(1+up_to_level)); is_persistently_squarefree(n, base) = { while(n>1, if(!issquarefree(n), return(0)); n \= base); (1); }; { countsA293441 = 1; countsA293519 = 0; k=1; n=3; while(n <= 1+up_to, if(!bitand(n-1, n-2), write("b293441.txt", k, " ", countsA293441); write("b293519.txt", k, " ", countsA293519); print1(countsA293519, ", "); countsA293441 = 0; countsA293519 = 0; k++); if(is_persistently_squarefree(n, 2), countsA293441++; if(!issquarefree(1+(2*n)), countsA293519++)); n += 2); } (Scheme) (define (A293519 n) (add (lambda (k) (* (if (and (= 1 (A008966 (+ k k))) (= 0 (A008966 (+ 1 k k)))) 1 0) (abs (A293233 k)))) (A000079 n) (+ -1 (A000079 (+ 1 n))))) ;; Implements sum_{i=lowlim..uplim} intfun(i) (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i))))))) CROSSREFS Cf. A008966, A293230, A293233, A293517, A293518, A293521. Sequence in context: A305866 A328406 A257396 * A237582 A097352 A076050 Adjacent sequences:  A293516 A293517 A293518 * A293520 A293521 A293522 KEYWORD nonn AUTHOR Antti Karttunen, Oct 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)