login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293519
Number of surviving (but not bifurcating) odd nodes at generation n in the binary tree of persistently squarefree numbers (see A293230).
6
0, 0, 0, 1, 1, 0, 2, 3, 2, 3, 3, 8, 10, 11, 17, 20, 31, 38, 46, 67, 90, 116, 160, 220, 280, 397, 509, 685, 927, 1280, 1663, 2248, 3056, 4050, 5383, 7339, 9714, 13029, 17714, 23738, 31791, 42793, 57473, 77175, 103839, 140100, 187495, 252068, 338257, 454325, 611101, 820924
OFFSET
0,7
FORMULA
a(n) = Sum_{k=(2^n)..(2^(1+n))-1)] abs(A293233(k)) * [1==(A008966(2k)] * [0==A008966(1+2k))].
A293518(n) + a(n) = A293521(n).
A293518(n) - a(n) = A293517(n).
EXAMPLE
a(3) = 1 because in the binary tree illustrated in A293230, there is only one odd node at the level 3 (namely, the node 13) that spawns just one offspring.
PROG
(PARI)
\\ A naive algorithm (see A293518 for a better program):
up_to_level = 28;
up_to = (2^(1+up_to_level));
is_persistently_squarefree(n, base) = { while(n>1, if(!issquarefree(n), return(0)); n \= base); (1); };
{ countsA293441 = 1; countsA293519 = 0; k=1; n=3; while(n <= 1+up_to, if(!bitand(n-1, n-2), write("b293441.txt", k, " ", countsA293441); write("b293519.txt", k, " ", countsA293519); print1(countsA293519, ", "); countsA293441 = 0; countsA293519 = 0; k++); if(is_persistently_squarefree(n, 2), countsA293441++; if(!issquarefree(1+(2*n)), countsA293519++)); n += 2); }
(Scheme)
(define (A293519 n) (add (lambda (k) (* (if (and (= 1 (A008966 (+ k k))) (= 0 (A008966 (+ 1 k k)))) 1 0) (abs (A293233 k)))) (A000079 n) (+ -1 (A000079 (+ 1 n)))))
;; Implements sum_{i=lowlim..uplim} intfun(i)
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 16 2017
STATUS
approved