login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220110
Expansion of A(x) satisfying A(A(x)) = x+2x^2+4x^3.
5
1, 1, 1, -3, 5, 1, -39, 117, 13, -1311, 3441, 9525, -78603, 16961, 1520521, -3649323, -28760163, 144787265, 601582689, -5374096875, -15170850555, 225456060897, 461284881657, -11141961064971, -15963771799251, 647040052660257, 569313149887057
OFFSET
1,4
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$, arXiv:1302.1986
FORMULA
a(n)=T(n,1), 2*T(n,m)= 2^(n-m) *sum_{j=0..m} binomial(j,n-3*m+2*j) *binomial(m,j) -sum_{k=m+1..n-1} T(n,k)*T(k,m), n>m, T(n,n)=1.
EXAMPLE
First column of
1;
1,1;
1,2,1;
-3,3,3,1;
5,-4,6,4,1;
1,5,-2,10,5,1;
-39,6,3,4,15,6,1;
117,-57,9,3,15,21,7,1;
13,128,-56,8,10,32,28,8,1;
-1311,201,84,-44,6,30,56,36,9,1;
MATHEMATICA
t[n_, m_] := t[n, m] = 1/2*(2^(n-m)*Sum[Binomial[j, n - 3*m + 2*j]*Binomial[m, j], {j, 0, m}] - Sum[t[n, k]*t[k, m], {k, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 27}] (* Jean-François Alcover, Feb 22 2013 *)
PROG
(Maxima)
T(n, m):=if n=m then 1 else 1/2*(2^(n-m)*sum(binomial(j, n-3*m+2*j)*binomial(m, j), j, 0, m)-sum(T(n, k)*T(k, m), k, m+1, n-1));
makelist((T(n, 1)), n, 1, 10);
CROSSREFS
Sequence in context: A204161 A346711 A278968 * A327693 A240752 A342277
KEYWORD
sign
AUTHOR
Dmitry Kruchinin, Dec 05 2012
STATUS
approved