OFFSET
1,2
COMMENTS
Consists of 1, 2, 4, p, p^2, 2p, and 2p^2, where p are the odd primes from A039787. - Ivan Neretin, Aug 24 2016
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..10000
William D. Banks and Francesco Pappalardi, Values of the Euler function free of kth powers, Journal of Number Theory, Vol. 120, No. 2 (2006), pp. 326-348.
Francesco Pappalardi, Filip Saidak and Igor E. Shparlinski, Square-free values of the Carmichael function, Journal of Number Theory, Vol. 103, No. 1 (2003), pp. 122-131.
FORMULA
The number of terms not exceeding k is (3*a/2) * pi(k) + O(k/(log(k)^c)), where pi(k) = A000720(k), c is any constant > 0, and a = 0.373955... is Artin's constant (A005596) (Pappalardi et al., 2003; Banks and Pappalardi, 2006). - Amiram Eldar, Jul 28 2020
EXAMPLE
a(17) = 49 is here because phi(49) = 42 = 2*3*7 is squarefree. Primes p, such that p-1 is squarefree are included.
MATHEMATICA
Select[Range[100], MoebiusMu[EulerPhi[#]] != 0 &]
PROG
(PARI) isok(n) = issquarefree(eulerphi(n)); \\ Michel Marcus, Aug 24 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected by T. D. Noe, Oct 25 2006
STATUS
approved