login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A039787
Primes p such that p-1 is squarefree.
24
2, 3, 7, 11, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, 131, 139, 167, 179, 191, 211, 223, 227, 239, 263, 283, 311, 331, 347, 359, 367, 383, 419, 431, 439, 443, 463, 467, 479, 499, 503, 547, 563, 571, 587, 599, 607, 619, 643, 647, 659, 683, 691, 719, 743
OFFSET
1,1
COMMENTS
An equivalent definition: numbers n such that phi(n) is equal to the squarefree kernel of n-1.
Minimal value of first differences (between odd terms) is 4. Primes p such that both p and p + 4 are terms are: 3, 7, 43, 67, 79, 103, 223, 439, 463, 499, 643, 823, ... - Zak Seidov, Apr 16 2013
The density of this set in A000040 is Artin's constant A = A005596 = 37.39...%, see Mirsky. - Charles R Greathouse IV, Oct 26 2015
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..25000, Oct 25 2015 (extending earlier b-file of Zak Seidov)
Theodor Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105:1 (1931), pp. 653-662.
Leon Mirsky, The number of representations of an integer as the sum of a prime and a k-free integer, American Mathematial Monthly 56:1 (1949), pp. 17-19.
EXAMPLE
phi(43)=42, 42=2^1*3^1*7^1, 2*3*7=42.
p=223 is here because p-1=222=2*3*37
MAPLE
isA039787 := proc(n)
if isprime(n) then
numtheory[issqrfree](n-1) ;
else
false;
end if;
end proc:
for n from 2 to 100 do
if isA039787(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Apr 17 2013
with(numtheory): lis:=[]; for n from 1 to 10000 do if issqrfree(ithprime(n)-1) then lis:=[op(lis), ithprime(n)]; fi; od: lis; # N. J. A. Sloane, Oct 25 2015
MATHEMATICA
Select[Prime[Range[132]], SquareFreeQ[#-1]&](* Zak Seidov, Aug 22 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(780) | IsSquarefree(p-1)]; // Bruno Berselli, Mar 03 2011
(PARI) is(n)=isprime(n) && issquarefree(n-1) \\ Charles R Greathouse IV, Jul 02 2013
(PARI) forprime(p=2, 1e3, if(issquarefree(p-1), print1(p", "))); \\ Altug Alkan, Oct 26 2015
CROSSREFS
Cf. A000010, A007947, A049092 (complement).
Sequence in context: A165318 A108184 A049091 * A267503 A226937 A227199
KEYWORD
nonn
EXTENSIONS
More terms from Labos Elemer
STATUS
approved