|
|
A373097
|
|
a(n) = a[n/r] + a[n/r^2] + a[n/r^3] + ... , where a(0) = 0, a(1) = 1, r = 3/2, and [ ] = floor.
|
|
2
|
|
|
0, 1, 1, 2, 3, 4, 6, 7, 9, 12, 12, 14, 18, 18, 24, 24, 26, 29, 36, 36, 36, 48, 48, 49, 52, 54, 59, 72, 72, 72, 72, 78, 96, 96, 96, 98, 104, 104, 109, 118, 118, 144, 144, 144, 144, 144, 150, 156, 192, 192, 192, 192, 194, 196, 208, 208, 210, 218, 222, 236, 236
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Conjecture: Let d(n) = a(n+1) - a(n) for n >= 0. Then d(n) = 1 for infinitely many n, and (d(n)) is unbounded.
|
|
LINKS
|
|
|
MATHEMATICA
|
a[0] = 0; a[1] = 1;
a[n_] := a[n] = Sum[a[Floor[n/(3/2)^k]], {k, 1, n}]
Table[a[n], {n, 0, 400}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|