login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325915
Total number of colors used in all colored integer partitions of n where all colors from an initial interval of the color palette are used and parts differ by size or by color.
3
0, 1, 3, 9, 25, 67, 176, 453, 1149, 2882, 7161, 17654, 43238, 105303, 255210, 615896, 1480771, 3548313, 8477415, 20199596, 48014369, 113879450, 269555798, 636875077, 1502195104, 3537705916, 8319377813, 19537936874, 45827441193, 107366261405, 251268532266
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} k * A308680(n,k).
a(n) ~ c * d^n * n, where d = 2.26562663992642295791262530033324290454663... is the root of the equation QPochhammer[-1, 1/d] = 4 and c = 0.1771510533646387556482103930322780317974659818141571819... - Vaclav Kotesovec, Sep 18 2019
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
g:= proc(n) option remember; `if`(n=0, [1, 0],
(p-> p+[0, p[1]])(add(b(j)*g(n-j), j=1..n)))
end:
a:= n-> g(n)[2]:
seq(a(n), n=0..32);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j] Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n];
g[n_] := g[n] = If[n == 0, {1, 0}, Function[p, p + {0, p[[1]]}][Sum[b[j] g[n - j], {j, 1, n}]]];
a[n_] := g[n][[2]];
a /@ Range[0, 32] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 08 2019
STATUS
approved