login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325916
Number of partitions of n into colored blocks of equal parts with colors from a set of size n such that the block with largest parts has the first color.
2
1, 1, 2, 5, 11, 27, 76, 177, 428, 966, 2724, 5986, 14322, 31241, 68632, 174364, 374901, 841417, 1792950, 3803764, 7688426, 18376432, 37158444, 80078021, 163155272, 335521478, 658661436, 1298215354, 2820956914, 5523327097, 11240000648, 22117134452, 43666070406
OFFSET
0,3
LINKS
FORMULA
a(n) = 1/n * [x^n] Product_{j=1..n} (1+(n-1)*x^j)/(1-x^j) for n>0, a(0)=1.
a(n) = A321880(n)/n for n > 0, a(0) = 1.
EXAMPLE
a(3) = 5: 3a, 2a1a, 2a1b, 2a1c, 111a.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, k*add(
(t-> b(t, min(t, i-1), k))(n-i*j), j=1..n/i) +b(n, i-1, k)))
end:
a:= n-> `if`(n=0, 1, b(n$3)/n):
seq(a(n), n=0..34);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, k Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] + b[n, i - 1, k]]];
a[n_] := If[n == 0, 1, b[n, n, n]/n];
a /@ Range[0, 34] (* Jean-François Alcover, Dec 15 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A321880.
Sequence in context: A027087 A363579 A055227 * A257790 A174145 A358451
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 08 2019
STATUS
approved